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ON STOCHASTIC PROGRAMED DESIGN OF STRATEGIES 

IN A DIFFERENTIAL GAME* 

N.N. KRASOVSKII 

A differential game /l-17/ is analyzed I in wbicb the strategies form controls on 
the basis of information on the motion's history. The computation of this game's 
value is discussed, as also is the construction of optimal strategies on the basis 
of auxiliary programmad constructions which contain an artificially introduced ran- 
dom element. Thus, a method of stochastic programmed design, proposed in ,&8,19/ 
for differential games, is examined here from a certain general viewpoint. 

1. Cansider the system described by the equation 

s* = f (t, x, U, v), u or: R, v E Q, to < t < 6 (1.1) 

where t is time, x is the n-dimensional phase vector of the object, u is the r-dimensional 
control veceor, v is the ~3-tiensional noise vector; the function f is continuous in all 
arguments and satisfies in x the Lipschitz condition 

I f (t, zm, 8.3, u) - f (tt 2P4 2% v) 1 < h I it(*) - .vP) I 

R and Q are compacta; the symholJx/denotes the Euclidean norm of x + Let the functional 

Y = Y (2 @Cl r*HUt (2.2) 

be specified, defined on the continuous functions x(ta[*Ji#) = (xft], to< t,<il and continuous in 
the metric 

The sense of the problem lies in the construction of a ccxkral law U which forms a control 
u by the feedback principle and guasantees the least pcssible value of Y. As the informa- 
tion element for the current instant zCZJ[t0,6J we take the motion history x(&,[.]T), realized 
up to this instant. Then the problem can be stated as follows. 
defined for all possible histories 5 (t,[.l$, x~(t,,, 61 , 

Every function ~(3 (to [+I 7), e) 
ma for sufficiently small values of 

the precision parameter s> 0 and satisfying the condition tt(z&J+ ]a), E) E R is called a 
strategy. Suppose that some strategy l+(ZftaJ*J~), E) has been chosen, a history s(t,[*J t*) 
realized, a value e>O and a partitioning A (zj), 2 = 0, . . ., na , for an interval t,<t< & 
of futuxe time have been chosen, and let zo= tot..*, z, ==6. Then the motion zc fta r*J@ con- 
tinuously extending the given history x (taf*f te) is determined for t* Q t,<# as the solution 
of the stepwise differential equation 

i 14 = j (t, s rtf, u (s (to f-1 rljr sf, u rtff, %i e t < zf+rl i = 0,. . ., nz - 1 
wbere the realization of the noise a@, f&J*) = (v~~J~@ ts< t-C@) can be any Boral-measur- 
able function, not dependent on our chaise. Let the symbol &, where 6>0, denote the part- 
itioning A &} which satisfies the condition Tf+r-z[<& i = 0,. ,., m- 1. For the chosen 
strategy@(.)= u(z(to[.J 7),e) and for the given initial history z(&,~.Jte) the quantity 

(to r (X(h[‘l @)I 

is called the guaranteed result p _ The strategy u"f.), which satisfies the condition 

PUW fr f& IsI b,)) = min,(.@u(.j (z (t@ t .I 4)) 

far every possible initial b&story *z(t,ief&)is said to be optimal. 
A function u(zft~f,f$, nt e defined for all possible histories rf&,[.]tf, for sufficiently 

small e>O and for all ue~, satisfying the condition v(~(t~f*Jz), u, s}EQ and beingBorel- 
measurable in u for each fixed x(&,~~Jzf and 8 , is called a counter-strategy. Suppose tbat 
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some counterstrategy u (82 (to [*I r), u, e) has been chosen, a history z(& [“It,) realized, avalue 
e> Oar@ a partitioning L\ (q) for the interval It,,*) have been chosen. Then the motion 

sjt,i -I#) ccmtimoz.xs~y extending zf&J*l$) is detemined for t*<<t<f+ as the solutim of 
the step-wise differential egsiation 

2‘ ftl = f (f7 J 81, IL ttl, v (2 it@ f-1 zJt L6 Etl, a)), 
q.Qt<z$+l* i-:0,..., m-l 

where the realization m(t, [*I*) = {~[21 Ei R, t, < t (6) can be any Sarel-measurable function. 
For the chasen counterstxategy V(S) = v(t(to f-16), u, e) and for the given initial history 
s(t,I=ft,) the guaranteed result p is determined by the equality 

The caunterstrategy v"(*) which satisfies the conditian 

nUo(.) (5 (to t - 1 &+N = maxu(.)fb(,j (z (to [* 1 t*)) 
for every passible initial history s(t,[+jt,) is said to be optimal. 

The pzoblems of OptfmaL strategy tt"f.f and optimal. counterstrategy v" (.) c~~&2.tute a 

differentiaf game. We say that this game has a value p" and a saddle point (ri'(.)* 4 (*)) if 
optimal u'(*) and v"(.) exist and the equafity 

PU"(.) (s (lo I.1 t*)) m pao(.)(.Z (to [*I &) = P0 (s@, I.1 f*)) 

is valid for every possible initial history x (to 1.1 t*). 

Theorem 1.1, The differential game being analyzed has a value and a saddle point. The 
theorem can be proved in a well-known way (see j4,18,20[, for example). In this cOnnectiOn 
the o~t~a~~~(~~ and r*(q) can be constructed from the game's value p" according to the con- 
ditions 

Here the symbol (a+ denotes the scalar product of vectors a and b, g*fl+[71and Y* M are 
the values at instant z far the accompanying histories Y*(&1.I%) and Y* (f* f-l z)~ which are 
determined fromthe conditions 

P" (Y* (to ['I 7)) = min p" (Y (to [*IT)) (1.3) 

$(Y* (a [*IT)) = maxP"tY (r, E:It)) (1.4) 

under the constraint ~ft(Eg~~ll)---yf~~f~~a)~~geexp2X(i- t). In the general case the consider- 
ed proOf Of Theroem 1.X is not ~ons~CtiVe, Therefare, the effective computation Of p" and 
the cOnstxuct%on of a*(*) and s"f.) remains an unsolved problem. 

2. We consider an estimate of the quantity pa (z (to I.1 t,)), relying on a certain auxil- 
iary stochastic programmed construction. Suppose that same history o(to[.]tt) has been fixed. 
For the interval [l,, S] we select a csrtain partitioning A {tr}, i = 1,. + ., k-t- 1, tl =: t*, -. -, 
t&+X =@. With this partitioning we connect the following probability space $2, F, P& In this 
space an elementary event b is any set u==(& _..,@t dr~,.-.,St% n&m3 zill and M are tz - 
dkeimional vectors, ~S@/<tt tS>/<K, whre fz is saroe sufficiently large number, F Fs a 
Bore1 o-algebra on Q, and the probability measure P is generated by aggregate-independent 
uniform dSstrj.butions of random vectors e(j) and s(j) in the corresponding balls tzl<x and 
ISl<l. Thus, we assume that with instant tj there iffi connected a pair {z(j), s(j)} of random 

variables distributed uniformly for Iz I< K and IsI& 1; all the variables z(j), su) are in- 
dependent in aggregate. 

Random functions Borel-measurable in a12 their arguments, nonanticipatory (in t) rela- 
tive to g[S,, Lj=f+. I - .$Z(t?, .@:. = ST s(Q), trQ t( ti+z /22./, are called nonanticlpatory stochastic 
programs v(t, u, o)'and ~(8, CO) . Therefore, these functions satisfy the egualities 

v (t, 24 0) = v (a, u, d’), . . ., zf”), %a1 , . ., s”)) 

u (t, 0) = 24 (I, 0, . . ., z(i), ~(1)~ , . ., do) 

far If< t<t**r*t = ,I,.. .,k, ?&lost suxefy in f,$). The lristory s{&o+i&)r*e partit&oning 
d j&f and some pair (u(&& rfr, u-,a# Of programs determine a random motion ~~~~~.~~,~~~ 

which continuously extends this history for t*< t<@$as the solution of the stochastic dif- 
ferential equation 
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(2.1) 
By rA(.) and uA(.)we denote programs corresponding to partition A. The quantity 

p* (x (to L-1 t*)) = sup, sup,,(.Jinf,(.Jessmax,y (10 (to i.16, 0)) 

where essmaxoy is computed for the random variable y on the space {P, F,P} , is called the 
programmed maximin P*. 

Theorem 2.1. The equality 

p" (x (to I-1 t*)) = p* (I (to I.1 t*)) (2.2) 

is valid for any history x(&, f-1 t*). The theorem's proof is a consequence of the following 
lemmas. 

Lemma 2.1. For any history x(tO f.1 t,), partitioning A , program VA(.) and number 8> 
P“(x(to[.] t+)) there exists a program uA(') which with probability one ensures the inequality 

Y (w (to [*I+, 0)) < B 

for the corresponding motion w(tO 1*]6, m) from (2.1). 
The lemma's validity follows frcdn the well-known property of u-stability of function P", : 

for any history ul&,[.]ti,o), number a>0 and admissible function ~(tiI.lt~+nu,m) we can find 
an admissible function ~jti].]ti+~,o)(all for a fixed value of e.) such that the inequality 

P" (10 (to 1.1 tr+l, 0)) d P" (UJ (to 1.1 t(* 0)) + e h+i - ti) (2.3) 

is fulfilled for the corresponding motion ur(t,[.]t~+~.a),Since here the function u(:i[.]ti+,,e) can 
be taken to be Borel-measurable in t and o (in t and (z(r),. . .,z(*),#), . . .,&i))), the lemma canbe 
proved directly by induction on the basis of inequalities (2.3), starting from 
P" (10 (to [*I t*)) and ending at 

P" (s (to [.I U) = 
P" (10 (to I.1 6, (0)) = y (KJ (to I.1 6. m)). 

LeWJlRS 2.2. For any history r(&, 1.1 t*)and number fl< P"(r(b [.]lt*))thereexists a part- 
i’CiOnincJ A andaprogram VA(.) such that foreveryprogram uA(.) the inequality 

p(Y(w(t0[*1*9m))>fV> 6>0 
(2.4) 

is ensured for the corresponding motion w(t, L-1 6, 0) from (2.11, where the symbol P(A) de- 
notes the probability of event A. 

Indeed, we shall assume the step b=maq(ti, -ti) of partitioning A(#{] to be sufficiently 
small (an estimate of the suitable smallness of 6 will be indicated below). We determine the 
program o (t, U, o) = u (ti, c, z('J, s('J), t( d t < ti+l, f = i, . . ., k, so as to fulfil the condition 

&J.f (t{, z(i) I Us v (ti, u, a’“, .P)))) = min, Ct"J+~ (t. ,I x tiJ, p, v)J (2.5) 

From the measurable selection lemma /22/ follows the possibility of constructing such a func- 
tion v (!,u,o), measurable in the arguments a@J, s”J and u for fi<t<tJ+,,t=l,...,k. We consider 
the random motion ~0 (to [.16,0) = (w ]t,ol, to< t<6,o~O). extending the history z(t01.1 t.) and gen- 
erated by the constructed program oA(.)of (2.5) and some program ua (*). Let ~*Iti,ol be the 
value at instant ti for the accompanying history y*(to]*lti,o), whicn is determined from con- 
dition (1.4) , where T = tt, +(fo[.] to = v (to 1.1 tit m) and e>O is some sufficiently small number. 
We select some value a>O. Because of the independence of the random variables rcJ,s"J, 1= 1, 

. . .) k we can assert the validity of the inequality 

P (I I(') (m) - 1 [tt, ml 1 < a, 1 .J’) (0) - (w [ti, m] - (2.6) 
y* [& 01) I <a I UJ @o [*I h, 0)) >, 9 (a) > 0 

Here the symbol P(AIC) denotes the conditional probability of event A with respect to the 
random variable (function) &_ Because of the continuity of function f(t,r,u.v) and the V- 
stability of function P" /4,20/, by well-known arguments /4,18,20/ we can now infer from con- 
ditions (2.5) and (2.6) that we can find a certain (random) history y(t0(.1 tt+l.m) which ex- 
tends the history r’(tof-1 ti, m) and is such that the inequality 

P (1 W (ti I.1 ti+lt 0) - Y (ti I.1 tic19 0) IP d 

(w 14, 4 - Y* Iti* ml)' (i + 2k (fi+l - ti) + E (6, a) (ti+l - ti))t 

P" (Y (to 1.1 ti+lv 0)) > p” (Y* (to ['I tis 0)) - E (at a) (k+l - t0 

I~(t0I~I~i,m))>1(~)>O 

where lim E(u,6) = 0,a -+ 0,b + 0 

is valid. Hence by induction we can prove that for any not preselected values E*>O and 
e>O we can find arbitrarily small values &>O and a>0 such that for the motion ~(t,,].]8,m) 
from (2.1) being examined we can find a history y(to (.I~,o) for which the inequality 



712 

(2.7) 

is valid. As a consequence of the continuity of p0 and y, from (2.7) it follows that for any 
value B < P" (2 (to 1.1 0 I for the choice of sufficiently small s>O and t*>O and for suffic- 
iently small b> o and a>0 the program u&(a) constructed for (2.4) ensures inequality (2.4) 
for every program u&(.) . This proves Lemma 2.2. 

3. In the general case the computation of the game's value p" in terms of the program- 
med maximin p* on the basis of equality (2.2) is scarcely constructive. However, in certain 
cases this equality is useful for estimating p" and for constructing u"(.) and v*(s) . Here 
we consider in detail the case when the equation of motion (1.1) is strictly linear, i.e. 

5' = A (t) z +f (t, u, v), u E II, v E Q (3.1) 

where.4 (t)is a continuous matrix-valued function. In this case we can construct the probabil- 
ity space {Q,F,P} on the basis of only the random variables scj), assuming'@ = {S'Q, . . ., s(Q), 
since in the case of (3.1) the variables so in condition (2.5) do not really play any role. 
(In general, in each actual case the space (a,F, P} can be selected as this or that depend- 
ing on the selection of realizations of some random function e(t,,[*l@,@or other as o , whose 
nature corresponds to the problem at hand). 

On the given probability space@, F, P) we now choose a certain normed linear spaceL@) 
(f&,* +J, a) of random functions w(t, [al@, -) = {w(t,u), it,, < t<6,oE8), continaing the random 
functions ru(t,m) with continuous (almost sure) realizations w(t, f-16, o). We assume that the 
given functional y of (1.2) can in some way or other be extended onto the realizations zv (to 

1.16, W) of the elements from L(Bf so thatwecanspeakoftherandomvariable y[~l=y(~(t*r’l~,~~). 
Here we assume the fulfillment of the following condition. Let W&*) be the set of elements 
w(e) = w(to I-16, *)from L(*), which satisfy the condition 

ess max,Y (W (to I-1 6, co))< B. (3.2) 

and let the inequality 

P(Y(~(~~[.l~, mD9fi-t$25 (3.3) 

be valid for some values s>O and g>(J for some element m(.)EL(*). Then the inequality 

cP>rl(8, s, t)>o (3.4) 

is valid for the distance cp in La from the element W(*)to setW& 
In what follows we take for definiteness, for example, that the norm II W (*) Ilo) in L(*) 

is specified by the inequality 

and that the norm in the adjoint space La (*)([t0,6], C4) of random functions I(*) = 1 (to [*]6, 0) = 
{Z(t, w), t,,Q t,<@, WE S}is specified by the equality 

where p(&) is some Bore1 measure on the interval [t,, I)] and the symbol M denotes the mean 
(mathematical expectation). 

For a given initial history 5 (to [*I t+) we select some number JJ Cp" (a: (4 f-1 t+)). Let some 
function &)(&,[.]+, .)EL@)satisfy condition (3.2). We choose a program VA(*) constructed 

in accordance with condition (2.51, under the assumption that the base space {C&F, P} cor- 

responds to a partitioning A of interval t*< t<#,having a sufficiently small step 8.Scan- 
ning all possible nonanticipatory stochastic prOgraiUS uA(‘), in space L@) we obtain an attain- 
ability domain G composed of all possible random motions w (tO[*16, *) from (2.11, extending 

the history s(t, J-1 t*). If the step 6 of partitioning A {tl) is sufficiently small, then by 
Lemma 2.2 the domain G cannot contain the function ~@)(t~[.JZ),.),because for a sufficiently 
small step 6 , for all the motions w(t,,(.)@,.) from (2.1) being examined, the condition (2.4) 
is fulfilled for some S>O and s>O. Furthermore, inequality (3.4) is fulfilled then for 
the distance tp in L@) from any motion w(tO [*I#, .) to the element rde)(tO J*l6, a). 



By arguments well known in the theory of strictly linear controlled systems 
that the closure in L@’ of domain G coincides with the closed convex bull WC', in 
domain G . Therefore, the inequality 

cp* >11@* s* E;f>8 
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we can show 
Ltm) of this 

f3.5f 

also will be fulfilled for the distance cp * in LoI from the element tia)(t,[.1-6,*) to the closed 
convex hull of domain G . Hence, once again on the basis of well-known arguments from the 
theory of strictly linear systems /4/, which rely on the theorem on the separation of convex 
sets in I;(") , we deduce the inequality (the prime denote transposition) 

~P(~Qt.ftr).A~w")(t~f.f6, .)f= f3.6) 

because the quantity g, in (3.6) is also the distance cp* , Here X (t,t*) is the fundamental 
matrix of solutions of the homogeneous equation r. = A (t)z and the symbol &lg(~)] denotes 
the conditional mean 

iw,Ig~~)J=.~~(tuff~sfw),...,~~tfw:)f* tz<r<ti+t, i= *...* 1 k 

Conversely, if some function u+Q(to[.It), ~)EFW, then ~@(t,f-lt& &@)ft,[*l@, *))=O. 
From these relations, with due regard to Lemmas 2.1 and 2.2,--we conclude that the programmed 
maximin p* (S (ta 1-1 t*)), and the game's value P"(z(tn[~] t,)) equal to it, is the upper bound 
of those numbers p for which the inequality 

~P~inf~~*~.~~ @(to t-1 &I*). & d*p (4 1.16, a)) > 0 

is valid when r&n f&, f-16, *f E w&*1. 
If the sets Wg(sf axe convex for every fi , then the quantity P* ==P" is the upper 

of those values of p fox which the inequality 

sup&g, (Se, (4 f-1 t,), A, vf$*‘) > 0 
is valid, where the quantity rp differs from the quantity P, from (3.6) only by the last 
mand which for the 9 from (3.81 has the form 

bound 

(3.8) 

Sum- 

when u)(*) (bO [.]Cr, -)E: YyB~S, Thus, the problem is reduced to computing the quantity Cp for (3.7) 
or for (3.8). The problem of computing cp is a mathematical programming problem on the max- 
imum of a functional concave in &f-), under the constraint 11 I (*f/k~*< 1. Such a problem has 
no principal difficulties; however, the practical computations often prove to be too labor- 
ious. 

&ove we have considexed the case when the original differential geme can be formalized 
in the classes (strategies-counterstrategies). In completely the same way we can pxove a 
theorem, similar to Theorem 2.1, also in the case when the game has been formalized in clas- 
ses of mixed strategies. The only difference here is that in the programmed stochastic con- 
struction the programs of the functions u(t,w) and v(t,u.,wf are replaced by the programs of 
the measures ~@,a) on R and v ft, of on Q. 

In conclusion, let US compare the quantity go involved in the programmed stochastic con- 
struction in the case of convex sets We (9 with corresponding quantities in the analogous 
problems treated in /18,19/* The difference is determined by the fact that here the computa- 
tion is based always on one and the same universal program VA(') from (2.5), whereas in /18, 
19/ the program v(.) is based each time as the extremal psogram correspondingtothepxoblem's 
properties on the maximum over l(.) . !!?he transition to the universal program VA(') improves 
certain qualities of the problem on the computation of rP : the quantity to be maximized be- 
comes a function concave in *t-(-f z etc. At the same time the quantity cp itself losescertain 
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useful properties. Thus, generally speaking, the quantity Cp loses the property of u-stabil- 
ity; only the quantity p* is left with it. This obtains because, in general, it is not as- 
sumed that the nature of space L@) corresponds to the nature of functional y and to the nat- 
ure of the estimate of the deviations of the random variable y [o) from the quantity essmax, 

y [all. Thus, for the sake ofdefiniteness,above we chose the Hilbert space L@). This 
determines the convenient adjoint space L*W But in many cases the property of u-stabil- 
ity can be returned to the quantity rp also in the case of the universal program VA(.) if the 
metric in L(2) is selectedinaccordance with the nature of functional y and with the estimate 
of the deviation of y [ol from the quantity essmax,y[ml. 

For example, if the functional ~(z(t~[.l6))=r(z[*)) and the quantity v(s) has the sense of 
some norm llcll in space {t), then as the norm l/w (*) h2)= I! w (6, .)Ik,, we can choose the quantity 
II w (6. * iI@, = ess maxO Iro@,4ll. Then the quantity cp acquires the appropriate property of u- 
stabiiity. But the computation of v is complicated by the fact that the adjoint space now 
turns out to be the space of additive functions h(A) of the subsets A ED. However, this is 
not necessarily too complicated a matter, since often the problem later is again reduced to 
suitable functions Z(o) of the points 0~0. If the quantity V does not have the sense of a 
norm, then again we can strive to return the u-stability property to the quantity cp by defin- 
ing the latter not intermsof distance in L w but on the basis of estimates which are deter- 
mined by the functions y, (or the functionals Y*) adjoint in due manner to the quantity Y. 
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